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1 Introduction

VABS (Variational Asymptotic Beam Sectional Analysis) is a code implementing the beam theo-
ries1–13,13–24 based on the concept of simplifying the original nonlinear three-dimensional (3D) anal-
ysis of slender structures into a two-dimensional (2D) cross-sectional analysis and a one-dimensional
(1D) nonlinear beam analysis using the variational asymptotic method.25

VABS takes a finite element mesh of the cross-section including all the details of geometry and
material as inputs to perform a homogenization analysis to compute sectional properties including
inertial properties and structural properties. These properties are needed for the 1D beam analysis
to predict the global behavior of slender structures. VABS can also perform a dehomogenization
analysis to compute the distributions of 3D displacements/strains/stresses, and failure indexes and
strength ratios over the cross-section based on the global behavior of the 1D beam analysis.

Since most of the theoretical details are presented in pertinent papers and collected in the book
by Prof. Hodges,7 this manual will only serve to help readers get started using VABS to solve
their own composite beam problems. This manual addresses the history of the code, its features,
functionalities, conventions, inputs, outputs, maintenance, and tech support.

2 VABS History

The research project that gave birth to VABS was initiated by Prof. Dewey Hodges when he was
first introduced to the variational asymptotic method by Prof. Berdickevsky at Georgia Tech in
1989 and has been ongoing ever since till the time of writing. The program name VABS first
appeared in [1].

The original version of VABS was based on a research code written by Prof. Cesnik. The fall
semester of 1998, when Prof. Yu began his graduate study at Georgia Tech, marked the beginning
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of the transition of VABS from a research code to a production design and analysis tool for prac-
ticing engineers. The code was rewritten from scratch using the modern Fortran language, with all
unnecessary restrictions eliminated, and the computing and memory efficiency greatly enhanced.
At the same time, Prof. Cesnik was continuing his work on VABS for piezoelectric materials at
MIT and later at University of Michigan. Profs. Hodges and Yu continue their work on VABS for
multiphysics modeling at Georgia Tech, Utah State University, and Purdue University. For this
reason, there are two variants of VABS: the Georiga Tech/Utah State/Purdue VABS, released and
maintained by Prof. Yu, and UM/VABS, released and maintained by Prof. Cesnik. From hence-
forth in this manual the term VABS will refer only to the Georgia Tech/Utah State/Purdue VABS,
and what follows is only applicable to this code.

Many researchers and engineers all over the world are actively using VABS. VABS is becoming a
standard tool for design and analysis of composite slender structures such as helicopter rotor blades,
wind turbine blades, high aspect ratio wings, UAM/eVTOL/UAV blades, propellers, landing gear,
composite tubes, etc.

3 What is New in Different VABS versions

3.1 What is New in VABS 4.1

The new capabilities of VABS 4.1 are:

1. Perform dehomogenization for multiple load cases in terms of forces and moments correspond-
ing to the Euler-Bernoulli model and the Timoshenko model.

2. Output the modes and corresponding ratios for failure criteria with identifiable modes such
as failure criterion 1, 2, 5.

3. Provide documentation for the user-define failure criterion capability.

4. Enable users to suppress the output of other stress/strain files except the average stresses/strains
for each element in the ele file.

5. Remove damping input for no damping analysis.

6. Output the classical stiffness matrix and compliance matrix at the shear center.

7. Enable comment lines in the inputs for better readability.

8. Output the time and date the code is compiled and released.

9. Provide simple instructions when VABS, VABS -h, or VABS -help is issued in the command
line.

10. Simplify the installation process without administrator privilege.
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3.2 What is New in VABS 4.0

The new capabilities of VABS 4.0 are:

1. Compute pointwise distributions of failure indexes and strength ratios over the cross-section
under a given load.

2. Compute the safety margin (the minimum strength ratio among all elements) of the cross-
section under a given load.

3. Output the nodal stress/strain values according to the original numbering of the finite element
nodes.

4. Output the complete set of engineering properties commonly used in conventional beam anal-
ysis including extension stiffness (EA), torsional stiffness (GJ), principal bending stiffnesses
(EI22, EI33), principal shear stiffness (GA22, GA33), tension center, shear center, principal
inertial axes, principal bending axes, and principal shear axes.

5. Since VABS 4.0, we change the executable name to VABS.

3.3 What is New in VABS 3.9

The main new feature of VABS 3.9 is prediction of sectional damping matrix based on the lamina
damping coefficients. VABS 3.9 can also output the cross-sectional area. Another feature is that
VABS 3.9 is now distributed as a single library.

3.4 What is New in VABS 3.8

The main new feature of VABS 3.8 is a new license manager to allow more versatile license mecha-
nisms including node locked licenses and floating licenses. The user does not have to put the license
in the same folder as the input file as it was the case for previous versions. Instead, the user can
use a node locked license file stored in the same folder as the VABS executable or obtain a floating
license from a license server.

Since VABS 3.8, we provide free academic licenses for students and professors to use the full
version of VABS for teaching and academic research.

Since VABS 3.8, we provide both Linux and Windows versions.

3.5 What is New in VABS 3.7

The main new feature of VABS 3.7 is to carry out the recovery up to the second order which
provides a better prediction for the 3D recovered fields in comparison to known exact solutions.
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3.6 What is New in VABS 3.6

The main new feature of VABS 3.6 is to use an improved method for optimizing the numbering
of finite element mesh. For large problems, it is much faster than the method used in previous
versions. The most recent version of fortran compiler is used for compiling the code resulting in
much faster recovery.

3.7 What is New in VABS 3.5

The main new feature of VABS 3.5 is for oblique cross-sectional analysis, the inputs are given in the
oblique cross-sectional system while in previous versions, the inputs are given in the normal cross-
sectional coordinates. Also starting VABS 3.5, users can use long names of input file, including
spaces in the path and file names.

3.8 What is New in VABS 3.4

The main new feature is expanding
√
g in the modeling for initially curved/twisted beams. For

some cases such a change made significant differences for obtaining first and second correction of the
stiffness matrix due to initial curvature and twist. Such a change is verified using an initially curved
strip for which an elasticity solution is obtainable. The input file for this case is isorectTrif2.sg. A
64-bit version of VABS is also available since VABS 3.4.

3.9 What is New in VABS 3.3

The main new feature is introducing a new input format, and keeping the previous input format
as optional. In the new format, the user only needs to provide one real number for θ1 as few users
take advantage of the nine real numbers for θ1, which is useful for elements with highly curved
edges. In the new format, we introduce layer definition so that a layer type instead of material type
is provided for each element. Each layer is defined through a unique combination of material type
and layerup angle θ3. It is more economical than assigning θ3 for each element, as what we have
done in the previous format, because the number of layers usually is much less than the number of
elements. These two changes reduce approximately 3/4 of real numbers needed for VABS inputs,
saving space and time. These changes will also simplify the development of VABS preprocessors as
it is easier to compute just one number for θ1 for each element.

3.10 VABS III and What is New

VABS was originally designed to run as a standalone code and its error handling, memory allocation/de-
allocation, and I/O were handled with this use in mind. However, in recent years, more and more
users began to explore the possibility of using VABS in a design environment. This motivates the
major upgrade of VABS to VABS III through restructuring the code.

Since the first release of VABS III, a few users have asked the difference between VABS III and
previous versions, in particular VABS 2.1.1 which was the last release and the code accompanying
Prof. Hodges’ book.7 Overall, VABS III is a much improved code in both accuracy and efficiency.
The main difference can be described according to the following two aspects.

4



� As far as functionalities concerned, VABS III

1. Uses the correct constraints so that it can reproduce the 3D elasticity theory for isotropic
prismatic beams. This change affects the warping functions, and affects all stiffness
models except the classical one. Such a correction enables VABS to reproduce the 3D
elasticity theory for isotropic prismatic beams and thus enables VABS to provide a better
modeling for prismatic or initially curved/twisted composite beams (VABS 3.0).

2. Recovers 3D stress/strain fields at each node in addition to Gauss points. The recovered
3D stress/strain fields are expressed in both the beam coordinate system and the material
coordinate system. VABS 2.1.1 only recovers 3D stress/strain fields at Gauss points
expressed in the beam coordinate system. For visualization, nodal values are convenient.
To apply failure criteria of composite materials, stresses/strains expressed in the material
coordinate system are needed (VABS 3.0).

3. Handles isotropic, orthotropic, and anisotropic material differently. Previous versions
treat all materials as orthotropic only and must take a total of 9 elastic constants.
VABS III allows general anisotropic material with as many as 21 elastic constants and
isotropic materials with as few as 2 elastic constants (VABS 3.0).

4. Can model hygrothermal effects of composite beams due to temperature and moisture
changes. As a companion capability, VABS Conduction is developed to carry out a di-
mensional reduction for the 3D conduction problem. VABS Conduction can be requested
separately (VABS 3.1).

5. Updates the transformation procedure into the Timoshenko model from the asymptotic
energy. A new perturbation method is developed to capture the effects due to initial
curvatures/twist during the transformation. The prediction for Timoshenko stiffness is
generally improved, even for some prismatic beams (VABS 3.2).

6. Outputs the average of 3D stresses/strains within each element for convenience of post-
processing (VABS 3.2.2).

7. Provides an option for recovering the 3D displacement/strain/stress fields based on the
linear beam theory (VABS 3.2.4).

� As far as the quality of the code is concerned, VABS III

1. Is restructured to change the error handling and error message handling, memory alloca-
tion and de-allocation, and I/O handling to facilitate its integration with other software
environments (VABS 3.0).

2. Interprets and echoes all the input data for quicker identification of mistakes in the input
file (VABS 3.0).

3. Is much faster than VABS 2.1.1 by modifying the mesh optimization algorithm and
adopting a new approach to calculate the elemental finite element matrices (VABS 3.0).

4. Uses dynamic link libraries (DLLs) to encapsulate the analysis capability so that VABS
has true plug-n-play capability which is convenient for integration into other environ-
ments. Now VABS can be used both as a standalone application and two callable
libraries. The two callable libraries and the corresponding manual for developers can be
requested separately (VABS 3.0).
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5. Has more thorough and informative error handling (VABS 3.0).

Quite a few bugs in VABS 2.1.1 have been corrected in VABS III and its later versions. One bug
is associated with the modified linear solver. Because of this bug, for some very rare cases, VABS
2.1.1 provides some annoying couplings which are not supposed to be there. VABS 3.0 has no such
anomaly. At least one bug related with the Trapeze effect inherited from the original VABS before
1998 has been corrected in VABS 3.0. A bug related with recovery is also corrected in VABS 3.2.3.

Starting from VABS 3.0, an evaluation version of VABS is free for anybody who asks. It
allows the user to evaluate the code for one month before obtaining a permanent license.

3.11 VABS II

VABS II was released in June 2004, with the major enhancement to remove the need of asking the
user to choose arbitrary point constraints and let the code determine the singularity and apply the
corresponding constraints. Other improvements of VABS II include calculation of principal inertial
axes, the mass matrix, and neutral axes, and a significant reduction of the computing time for large
size problems.

4 VABS Features and Functionalities

4.1 VABS Features

Along with the features of previous versions, the most recent version of VABS has the following
features:

1. It is a highly modularized code written in the modern Fortran language. All the problem-
dependent arrays are allocated dynamically during run time, and the user can use all the
memory up to the limit of the machine. All the outstanding abilities of array handling in the
modern Fortran language have been exploited.

2. It adopts highly efficient techniques to reduce the requirement of RAM and increase the
computing efficiency. Now cross-sections as complex as real composite helicopter rotor blades
with hundreds of layers can be easily handled on a laptop computer.

3. It has a general element library that includes all the typical 2D elements such as 3, 4, 5,
6-node triangular elements and 4, 5, 6, 7, 8, 9-node quadrilateral elements. Users are free to
choose the type of elements, and different types of elements can be mixed within one mesh.

4. It can deal with arbitrary layups. Users can provide one parameter for the layup orientation
and one parameter for the ply orientation to uniquely specify the material system in the
global coordinate system. Nine parameters can be used for the ply orientation if a ply is
highly curved and the ply angle is not uniform within an element.

5. It detects singularities and properly removes them to render the solution as a true represen-
tation of the theory. Older versions before VABS II dealt with them approximately by asking
the users to input four constraints on three distinct, user-specified nodes. The arbitrariness of
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the older approach can affect the refined models, and sometimes may even render the linear
system unsolvable.

6. It applies the four constraints on the warping functions in such a way that the 3D elastic-
ity solution can be reproduced for isotropic beams, correcting a mistake related with these
constraints in previous versions.

7. It does not require the beam reference line to be the locus of cross-sectional area centroids.
VABS can calculate the centroid for any arbitrary cross-section, and users can choose their
own reference line for the convenience of the 1D global beam analysis.

8. It can deal with isotropic materials, orthotropic materials, and general anisotropic materials,
while the previous versions treat all materials as orthotropic.

9. It can be quickly and conveniently integrated with other environments such as computer-
aided design environments, multidisciplinary optimization environments, or commercial finite
element packages.

10. VABS can be executed as a standalone executable in command line or called by other codes
as a library.

4.2 VABS Functionalities

VABS is a general-purpose, cross-sectional analysis tool for computing inertial, stiffness, and
strength properties of general cross-sections. Specifically, it has the following functionalities:

1. Compute the 6×6 mass matrix, written in terms of the mass per unit length, and the first and
second mass moments of inertia about the three axes. Based on the information provided by
the mass matrix, VABS calculates the mass center, the principal inertial axes, the principal
mass moments of inertia, and the mass-weighted radius of gyration.

2. Compute the geometrical center of the cross-section and the area of the cross-section.

3. Compute the 4×4 stiffness matrix and compliance matrix for the classical model (also called
the Euler-Bernoulli model) for prismatic or initially curved/twisted composite beams with
normal or oblique cross-sections. Based on the classical model, VABS can calculate the
location of tension center, the extension stiffness (EA), the torsional stiffness (GJ), the
principal bending stiffnesses (EI22 and EI33), and the principal bending axes.

4. Compute the 6×6 stiffness matrix and compliance matrix for the Timoshenko model for
prismatic or initially curved/twisted composite beams with normal cross-sections. Based on
the Timoshenko model, VABS can calculate the location of the shear center, the principal
shear stiffnesses (GA22 and GA33), and the principal shear axes.

5. Compute the 5×5 stiffness matrix and compliance matrix for the Vlasov model for prismatic
or initially curved/twisted composite beams with normal cross-sections, which is important
for thin-walled beams with open sections.
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Figure 1: VABS beam coordinate system

6. Compute the trapeze effects, a nonlinear effect important for beams under large centrifugal
forces. The composite beam could be either prismatic or initially twisted and curved.

7. Compute 3D pointwise displacement, strain, and stress fields using the global behavior of a 1D
global beam analysis using the classical model, the Timoshenko model, or the Vlasov model.
Multiple recovery runs can be performed for different inputs of global beam responses without
repeating the homogenization analysis. The recovered stress/strain fields are evaluated both
at the nodal positions and Gauss points. They are expressed in both the material coordinate
system and the beam coordinate system.

8. Compute sectional damping matrix for composite beams. The computation is based on
the simple concept of scaling stiffness related matrices with the lamina damping coefficient
specified for each material.

9. Compute hygrothermal effects of composite beams due to temperature and moisture changes.
As a companion capability, VABS Conduction is developed to carry out a dimensional reduc-
tion for the 3D conduction problem, which can be requested separately.

10. Compute the failure index and strength ratio distribution over the cross-section, and the
strength ration for the entire cross-section.

5 VABS Conventions

To understand the inputs and interpret outputs of the program correctly, we need to explain some
conventions used by VABS.

First, VABS uses a right hand system, the beam coordinate system, denoted as x1, x2 and x3,
with x1 as the beam axis and x2 and x3 as the local Cartesian coordinates of the cross-section (see
Figure 1). Usually, for rotor blades, x1 is along the direction of the span and points to the tip, x2 is
along the direction of the trailing edge to the leading-edge of the airfoil and points to the direction
of the leading edge, and x3 points upward so that x1, x2, x3 form a right-hand system. Often the
origin of x1 is located at the root of the blade, yet the user is free to choose the origin of x2 and x3
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at an arbitrary point of the cross-section, or particular references with physical meaning such as
the mass center, geometry center, tension center, or shear center. Detailed information is needed
to define the cross-sectional geometric domain spanned by x2 and x3 and the materials that occupy
that domain. Also, certain characteristics along the span direction, such as initial curvature/twist,
are needed for cross-sectional analyses when they are not equal to zero. The obliqueness should
be specified when reference cross-section is not normal to the reference line, such as the case of
a swept wing. It is noted that the beam coordinate system is the same as the undeformed beam
coordinate system b defined in Ref. [7].
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Figure 2: VABS triangular element node numbering and corresponding integration schemes

Second, VABS numbers the nodes of each element in the counterclockwise direction, as shown
in Figure 2 for triangular elements and Figure 3 for quadrilateral elements. Nodes 1, 2, and 3 of
the triangular elements and nodes 1, 2, 3, and 4 of the quadrilateral elements are at the corners.
Nodes 5, 6, 7 of the triangular elements and nodes 5, 6, 7, 8, 9 for quadrilateral elements are optional.

The recovered 3D displacements are values at each node expressed in the VABS beam coor-
dinate system (Figure 1). However, stresses and strains are most accurately evaluated at Gauss
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Figure 3: VABS quadrilateral element node numbering and corresponding integration schemes
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integration points. Gauss integration schemes for different orders of the two types of elements are
also shown in Figures 2 and 3. The red interior points correspond to the integration scheme for
linear elements and the green interior points correspond to the integration scheme for quadratic
elements. VABS can also recover 3D stresses and strains at each node as suggested by our industry
users. The recovered stresses and strains are expressed in both the beam coordinate system and
the material coordinate system which is needed for failure analysis of composite materials.

Figure 4: VABS layup convention

VABS allows the user to choose any unit system of convenience. However, it is necessary to be
consistent in the choice of units to avoid confusion. Particularly, users must never use the pound
as a unit of mass to avoid confusion. When pounds are used for force and feet for length, the unit
of mass must be slug = lb-sec2/ft. If inches are used for length along with pounds for force, then
the unit of mass must be lb-sec2/in.

Finally, to understand the VABS input convention for composite layups, we need to find re-
lationships among three coordinate systems: the beam coordinate system (x1, x2, x3) used by the
user to define the geometry, the material system (e1, e2, e3) used by the user to define the material
properties, and an intermediate one to define the ply plane (y1, y2, y3). As shown in Figure 4, the
ply coordinate system (y1, y2, y3) is formed by rotating the global coordinate system (x1, x2, x3) in
the right-hand sense about x1 by the amount 0 ≤ θ1 ≤ 360◦. Then, the ply coordinate system
(y1, y2, y3) is rotated about y3 in the right-hand sense by the amount −90◦ ≤ θ3 ≤ 90◦ to form
the material system (e1, e2, e3), the range of θ3 being the same as commonly defined in the field of
composite materials. Here, we use the box-beam section depicted in Figure 5 to illustrate VABS
layup conventions. Here, x1 is pointing toward the reader, x2 is pointing to the right side of the
reader, and x3 is pointing upward vertically. For the upper wall: θ1 = 0◦; the left wall: θ1 = 90◦;
the lower wall: θ1 = 180◦; the right wall: θ1 = 270◦. For all the walls θ3 = θ for the box-beam in
Figure 5 because all the fibers are rotating positively about y3/e3 by the angle θ. The users can
specify their own stacking sequences. The stacking sequences expressed from the innermost layer
to the outermost layer for each wall are often used.
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Figure 5: VABS layup convention for a box-beam

6 VABS Installation and Execution

VABS is distributed in the form of VABSx.xReleasePCMM-DD-YEAR.zip and VABSx.xReleaseLinuxMM-
DD-YEAR.zip for Windows and Linux, respectively, with “x.x” denotes the version number. Unzip
the file into a folder of your choice is all you need to do for installing VABS without administrator
privilege. More details about installation can refer to Quick Start.pdf.

VABS is a command line code. When the user types VABS, VABS -h, or VABS -help in
the command line, some simple instructions for providing correct arguments is provided. VABS
is executed using VABS inputfile analysis nload in the regular command prompt with inputfile
required and analysis and nload optional. The command line argument analysis lets VABS know
which type of analyses to perform.

1. If analysis does not exist, VABS will carry out a homogenization analysis to compute the
inertial and stiffness properties.

2. If analysis is equal to 1, VABS will carry out a dehomogenization analysis to recover 3D
displacements, strains, stresses based on the nonlinear beam theory with minimum outputs.

3. If analysis is equal to 10, VABS will carry out a dehomogenization analysis to recover 3D
displacements, strains, stresses based on the nonlinear beam theory with large outputs.

4. If analysis is equal to 2, VABS will carry out a dehomogenization analysis to recover 3D
displacements, strains, stresses based on the linear beam theory with minimum outputs.
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5. If analysis is equal to 20, VABS will carry out a dehomogenization analysis to recover 3D
displacements, strains, stresses based on the linear beam theory with large outputs.

6. If analysis is equal to 3, VABS will carry out a dehomogenization analysis to evaluate the
distribution of failure index and strength ratio over the cross-section, and the strength ratio
of the entire cross-section.

If analysis is equal to 1, 2, 3, we can also provide another command line argument nload as the
total number of loads for VABS to perform the corresponding dehomogenization analysis. If this
argument does not exist, it will perform the dehomogenization analysis for a single load case.

7 VABS Inputs

Although a few preprocessors, such as PreVABS, have been developed to create VABS input files,
it is still beneficial for advanced users, particularly those who want to embedded VABS in their
own design environment, to understand the meaning of the input data.

Starting from VABS 4.0, the inputs for the VABS are separated into two files: homogenization
input file and dehomogenization input file. VABS homogenization run only requires the homoge-
nization input file with a name of the user’s choice. The dehomogenization input file associated
with the homogenization input file with extension glb. In other words, if the homogenization input
file name is input file name, the dehomogenization input file must be input file name.glb. Empty
lines or comment lines can be used in the input file for readability. The comment line must start
with “!”.

7.1 Homogenization Input File

The first line lists two newly introduced integer flags arranged as: “format flag nlayer”. If the first
flag is 1, the input is prepared in the new format, otherwise, it is prepared in the old format. The
second integer provides the number of layers in the section. Note, here layer is defined as a unique
combination of material type and layup orientation, it does not necessarily corresponds to the defi-
nition used in the manufacturing sense. For example, even if a section is made of a single isotropic
material, we consider it has one layer. Hence, nlayer should be always given a value greater than
1 if format flag=1 and it is not used when using the old format.

The second line has two flags arranged as: “Timoshenko flag damping flag thermal flag”. The
first flag, Timoshenko flag, can be only 1 or 0. If it is 1, VABS will construct both the classical
model (also called the Euler-Bernoulli model) and the Timoshenko model. If it is 0, it will only
construct the classical model. The second flag, damping flag, can be equal to 0 or 1. If it is equal
to 0, VABS will not compute the damping matrix for the section. If it is equal to 1, VABS will
compute the damping matrix. The third flag, thermal flag, can be equal to 0 or 3. If it is equal to
zero, VABS will carry out a pure mechanical analysis. If it is equal to 3, VABS will carry out a
one-way coupled thermoelastic analysis.
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Figure 6: Sketch of an oblique reference cross-section

The third line has four flags arranged as: “curve flag oblique flag trapeze flag Vlasov flag.” These
flags can be only 1 or 0. Their uses are explained in the following:

1. To model initially curved and twisted beams, curve flag is 1, and three real numbers for the
twist (k1) and curvatures (k2 and k3) should be provided in the very next line.

2. To model oblique cross-sections, oblique flag is 1, and two real numbers are needed in the
following line to specify the orientation of an oblique reference cross-section, see Figure 6 for
a sketch of such a cross-section. The first number is cosine of the angle between normal of the
oblique section (y1) and beam axis x1. The second number is cosine of the angle between y2
of the oblique section and beam axis (x1). The summation of the square of these two numbers
should not be greater than 1.0 in double precision. The inputs including coordinates, material
properties, etc. and the outputs including mass matrix, stiffness matrix, etc. are given in the
oblique system, the yi coordinate system as shown in Figure 6. Note that this feature is only
enabled for the classical beam model.

3. To obtain the trapeze effect, trapeze flag is 1.

4. To obtain the Vlasov model, Vlasov flag is 1. Vlasov flag can be 1 only if Timoshenko flag
is 1. VABS will first construct the Timoshenko model, which determines the location of the
shear center. If the shear center is not at the origin of the beam coordinate system, VABS
will move the origin of beam coordinate system to the shear center and repeat the calculation
to obtain the Vlasov model.
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The next line lists three integers arranged as: “nnode nelem nmate,” where nnode is the total
number of nodes, nelem the total number of elements, and nmate the total number of material types.

The next nnode lines are the coordinates for each node arranged as: “node no x2 x3,” where
node no is an integer representing the unique number assigned to each node and x2, x3 are two real
numbers describing the location (x2, x3) of the node. Although the arrangement of node no is
not necessary to be consecutive, every node starting from 1 to nnode should be present.

The next nelem lines list 10 integers for the nodes for each element (also known as the con-
nectivity relations). They are arranged as: “elem no node 1 node 2 node 3 node 4 node 5 node 6
node 7 node 8 node 9,” where elem no is the number of element and node i (i = 1, 2, . . . , 9) are
nodes of this element. If a node is not present in the element, the value is 0. If node 4 is 0, the ele-
ment is a triangular element; see Figures 2 and 3 for the VABS numbering convention. Although
the arrangement of elem no is not necessary to be consecutive, every element starting
from 1 to nelem should be present.

If format flag = 1, that is, if the new format is used, the next nelem lines list the layer type
and the layer plane angle (θ1) for each element as: elem no layer type θ1, where layer type is an
integer representing which layer the element elem no belongs to, and θ1 is a real number describ-
ing the layer plane angle for the element. Here, θ1 is assumed to be constant for each element,
thus it can be calculated at any material point belonging to the element, such as the centroid, or
computed as the average of θ1 of all the points within the element. Although the arrangement
of elem no is not necessary to be consecutive, every element starting from 1 to nelem
should be present. For isotropic materials, θ1 will not enter the calculations.

If format flag is not equal to 1, that is, if the old format is used, the next nelem lines list
the material type and layup parameters for each element as: elem no material type θ3 θ1(9), where
material type is an integer representing the type of the material for the element elem no, θ3 is a
real number representing the layup angle in degrees for this element, and θ1(9) is an array storing
nine real numbers for the layer plane angles at the nodes of this element. For simplification, if the
ply orientation can be considered as uniform for this element, θ1(1) stores the layer plane angle
and θ1(2) = 540◦, and all the rest can be zeros or other real numbers because they do not enter the
calculation. If the element has fewer than nine nodes, zeros are to be input for the corresponding
missing nodes, as in the case for connectivity. Although the arrangement of elem no is not
necessary to be consecutive, every element starting from 1 to nelem should be present.
For isotropic materials, neither θ3 nor θ1(9) will enter the calculations.

If format flag = 1, that is, if the new format is used, the next nlayer lines define the layers used
in the section. They are arranged as: layer id mate type θ3, where layer id is an integer denoting
the identification number for each layer, mate type is an integer denoting the material type used in
the layer, and θ3 is a real number denoting the layup orientation. For example, if layer 1 is made of
material 1 and having −15◦ layup, we will provide the information as 1 1 − 15.0. If damping flag
is 1, a damping coefficient for each layer is also needed to input right after θ3. In others words, the
input should be arranged as layer id mate type θ3 damping layer, with damping layer indicating
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the damping coefficient for the layer.

The next nmate blocks defines the material properties. They are arranged as:
mat id orth
const1 const2 ....

where mat id is the number of material type, orth is the flag to indicate whether the material is
isotropic (0), orthotropic (1) or general anisotropic (2). The rest are material constants.

For isotropic materials, orth is 0, if thermal flag is 0, there are 3 constants arranged as:
E ν
ρ

where E is the Young’s modulus, ν is the Poisson’s ratio, and ρ is the density of the material.
Poisson’s ratio must be greater than -1.0 and less than 0.5 for isotropic materials, although VABS
allows users to input values that are very close to those limits.

If thermal flag is 3 and orth is 0, and there are 4 constants arranged as:
E ν
ρ
α

where α is the coefficient of thermal expansion (CTE).

For orthotropic materials, orth is 1, if thermal flag is 0, there are 10 constants arranged as:
E1 E2 E3

G12 G13 G23

ν12 ν13 ν23
ρ

including the Young’s moduli (E1, E2, and E3), the shear moduli (G12, G13, and G23), the Poisson’s
ratios (ν12, ν13, and ν23), and the mass density (ρ). The convention of values is such that these
values will be used to form the following the Hooke’s law for composite materials:

ε11
2ε12
2ε13
ε22
2ε23
ε33


=



1
E1

0 0 −ν12
E1

0 −ν13
E1

0 1
G12

0 0 0 0

0 0 1
G13

0 0 0

−ν12
E1

0 0 1
E2

0 −ν23
E2

0 0 0 0 1
G23

0

−ν13
E1

0 0 −ν23
E2

0 1
E3





σ11
σ12
σ13
σ22
σ23
σ33


If thermal flag is 3 and orth is 1, and there are 13 constants arranged as:

E1 E2 E3

G12 G13 G23

ν12 ν13 ν23
ρ
α11 α22 α33

where α11, α22, α33 are the CTEs along three directions.
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For general anisotropic materials, orth is 2, if thermal flag is 0, there are 22 constants arranged
as:

c11 c12 c13 c14 c15 c16
c22 c23 c24 c25 c26

c33 c34 c35 c36
c44 c45 c46

c55 c56
c66
ρ

These values are defined using the following Hooke’s law:

σ11
σ12
σ13
σ22
σ23
σ33


=



c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66





ε11
2ε12
2ε13
ε22
2ε23
ε33


If thermal flag is 3 and orth is 2, there are 28 constants arranged as:
c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26
c33 c34 c35 c36

c44 c45 c46
c55 c56

c66
ρ

α11 2α12 2α13 α22 2α23 α33

where αij , with i = 1, 2, 3 and j = 1, 2, 3, are the components of the second-order CTE tensor.
CTEs corresponding to the shear strains are multiplied by two because the engineering shear strains
are twice of the corresponding tensorial shear strains. The material constants are expressed in the
material coordinate system (see Figure 4). If the material properties are given in a different co-
ordinate system, or the arrangement of stresses and strains are different from what VABS uses, a
proper transformation of the material properties is needed.

If damping flag is 1, a damping coefficient is input on the very next line following the density
input. For example, if orth=0 and thermal flag=3 (thermoelastic analysis with isotropic materials),
the material constants are arranged as:

E ν
ρ
γ
α

where γ is a scalar representing the material damping property. It is noted that the damping
coefficients for each layer and for each material are additive. In other words, the total damping
coefficient used to scale the stiffness-related matrices is damping layer + γ.
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If thermal flag is equal to 3, we also need to provide the following nnode lines for tempera-
ture for each node arranged as: “node no T ,” where node no is an integer representing the unique
number assigned to each node and T is a real number describing the temperature of the node.
These temperature values can be calculated either from a 3D heat conduction analysis or using
VABS Conduction, which is a generalization of the VABS approach for heat conduction analysis.
Although the arrangement of node no is not necessary to be consecutive, every node
starting from 1 to nnode should be present.

Now, we have prepared all the inputs necessary for performing the homogenization run to
compute the inertial properties and structural properties of the cross-section. That is, when analysis
in Section 6 does not exist.

7.2 Dehomogenization Input File

If analysis in Section 6 is equal to 1,2, 3, users should provide additional information in the de-
homogenization input file for VABS to perform a dehomogenization analysis. A corresponding
homogenization analysis must be run before carrying out the dehomogenization analysis.

If analysis is equal to 3, VABS will perform failure analysis of the cross-section. Strength prop-
erties for each material must be provided in the dehomogenization input file. Strength properties
for each material include a failure criterion and corresponding strength constants. Two lines will
be inserted and the inputs needed for failure analyses should be arranged as:
failure criterion num of constants
const1 const2 const3 . . .
failure criterion is an integer identifier for the failure criterion. num of constants indicates the
number of strength constants needed for the corresponding failure criterion. const1 const2 const3 . . .
are the corresponding strength constants. It is noted that this block of data should be correspond-
ing to the material block in the homogenization input file. In other words, for each material with
mat id, we need to provide such information.

failure criterion can be equal to 1, 2, 3, 4, 5, and another number greater than 10. For
isotropic material, 1 is max principal stress criterion, 2 is max principal strain criterion, 3 is max
shear stress criterion (also commonly called Tresca criterion), 4 max shear strain criterion, and 5
is Mises criterion. For anisotropic materials, 1 is max stress criterion for anisotropic materials, 2 is
max strain criterion for anisotropic materials, 3 is Tsai-Hill criterion, 4 is Tsai-Wu criterion and 5
is Hashin criterion. 11 and larger indicates a user-defined failure criterion. It is assumed that the
number of strength constants will not be greater than 9 for a material. If the material is isotropic,
the failure criterion and corresponding strength constants are defined as follows:

� If failure criterion is 1, the max principal stress criterion is used and two strength constants
are needed: one for tensile strength (X) and one for compressive strength (X ′), arranged as
X,X ′.

� If failure criterion is 2, the max principal strain criterion is used and two strength constants
in terms of strains are needed: one for tensile strength (Xε) and one for compressive strength
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(X ′
ε), arranged as Xε, X

′
ε.

� If failure criterion is 3, the max shear stress criterion (aka Tresca criterion) is used and one
shear strength constant (S) is needed.

� If failure criterion is 4, the max shear strain criterion is used and one shear strength constant
in terms of strains (Sε) is needed.

� If failure criterion is 5, the Mises criterion is used and one strength constant (X) is needed.

If the material is not isotropic (transversely isotropic, orthotropic, or general anisotropic), the
failure criteria and corresponding strength constants are defined as follows:

� If failure criterion is 1, the max stress criterion is used and nine strength constants are
needed: tensile strengths (X,Y, Z) in three directions, compressive strengths (X ′, Y ′, Z ′)
in three directions, and shear strengths (R, T, S) in three principal planes, arranged as
X,Y, Z,X ′, Y ′, Z ′, R, T, S.

� If failure criterion is 2, the max strain criterion is used and nine strength constants in terms
of strains are needed: tensile strengths (Xε, Yε, Zε) in three directions, compressive strengths
(X ′

ε, Y
′
ε , Z

′
ε) in three directions, and shear strengths (Rε, Tε, Sε) in three principal planes,

arranged as Xε, Yε, Zε, X
′
ε, Y

′
ε , Z

′
ε, Rε, Tε, Sε.

� If failure criterion is 3, the Tsai-Hill criterion is used and six strength constants are needed:
normal strengths in three directions and shear strengths in three principal planes, arranged
as X,Y, Z,R, T, S.

� If failure criterion is 4, the Tsai-Wu criterion is used and nine strength constants are needed:
tensile strengths (X,Y, Z), compressive strengths (X ′, Y ′, Z ′) in three directions, and shear
strengths (R, T, S) in three principal planes, arranged as X,Y, Z,X ′, Y ′, Z ′, R, T, S.

� If failure criterion is 5, the Hashin criterion is used and six strength constants are needed:
tensile strengths (X,Y ), compressive strengths (X ′, Y ′) in two directions, and shear strengths
(R,S) in two principal planes, arranged as X,Y,X ′, Y ′, R, S.

It is noted that for failure analyses, general anisotropic materials are also approximated using
orthotropic materials due to limited number of strength constants. In VABS, both the tensile
strengths and compressive strengths are expressed using positive numbers. In other words, in the
uniaxial compressive test along y1 direction, σ11 = −X ′ when material fails.

The above block of data for strength properties for each material only needed if analysis=3. If
analysis=1 or 2, the strength properties are not needed and should not be provided in the deho-
mogenization input file. Only the global beam responses as explained below should be stored in
the dehomogenization input file.

The rest of inputs in the dehomogenization input file contains the global beam responses ob-
tained from the 1D global beam analysis. To carry out a dehomogenization analysis based on the
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classical model, VABS requires the following data:

u1 u2 u3
C11 C12 C13

C21 C22 C23

C31 C32 C33

F1 M1 M2 M3

where u1, u2, and u3 are the 1D beam displacements along x1, x2, x3, respectively. The matrix Cij ,
with i = 1, 2, 3 and j = 1, 2, 3, is the direction cosine matrix defined as

Bi = Ci1b1 + Ci2b2 + Ci3b3 with i = 1, 2, 3

where B1, B2, and B3 are the base vectors of the deformed beam and b1, b2, and b3 are the base
vectors of the undeformed beam. Details of this definition can be found in Ref. [7]. ui and Cij are
needed only for recovering 3D displacements. If the user is not interested in 3D displacements, these
values can be arbitrary real numbers. F1 is the axial force, M1 is the torque, M2 is the bending
moment around x2, and M3 is the bending moment around x3. The sectional stress resultants are
needed for computing 3D stresses/strains/failure indexes/strength ratios within the cross-section.
For example, if the user wants to compute these quantities under 1 unit tensile axial force along
with 1 unit bending moment around x2, the inputs can be arranged as:

0 0 0
1 0 0
0 1 0
0 0 1
1 0 1 0

To perform dehomogenization for multiple load cases, the user needs to insert corresponding
lines of F1,M1,M2,M3 after the end of this block. For example, to perform dehomogenization for
two more load cases with F1 = 2,M1 = 2,M2 = M3 = 0 and F1 = 2,M1 = 3,M3 = 4,M5 = 5, we
must provide the following inputs.

0 0 0
1 0 0
0 1 0
0 0 1
1 0 1 0
2 2 0 0
2 3 4 5

To carry out a dehomogenization analysis based on the Timoshenko model, VABS requires the
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following data:
u1 u2 u3
C11 C12 C13

C21 C22 C23

C31 C32 C33

F1 M1 M2 M3

F2 F3

f1 f2 f3 m1 m2 m3

f ′
1 f ′

2 f ′
3 m′

1 m′
2 m′

3

f ′′
1 f ′′

2 f ′′
3 m′′

1 m′′
2 m′′

3

f ′′′
1 f ′′′

2 f ′′′
3 m′′′

1 m′′′
2 m′′′

3

where the additional data F2 and F3 are transverse shear forces along x2 and x3, respectively.
f1, f2, f3 are distributed forces (including both applied forces and inertial forces) per unit span
along x1, x2, x3 respectively. m1,m2,m3 are distributed moments (including both applied and
inertial moments) per unit span along x1, x2, x3 respectively. The prime denotes derivative with

respect to beam axis, that is ()′ = ∂
∂x1

, ()′′ = ∂2

x2
1
, and ()′′′ = ∂3

x3
1
. If nload > 1, at the end of the

above data block, we need to append two lines (one line for F1,M1,M2,M3 and one line for F2, F3)
for each load case.

To carry out a dehomogenization analysis based on the Vlasov model, VABS requires the
following data:

u1 u2 u3
C11 C12 C13

C21 C22 C23

C31 C32 C33

γ̄11 κ̄1 κ̄2 κ̄3 κ̄′1 κ̄′′1 κ̄′′′1

where γ̄11 is the beam axial strain, κ̄1 is the twist , κ̄2 and κ̄3 are the curvatures around x2 and x3
respectively.

It is noted that the global behavior needed for dehomogenization analyses should not violate the
small strain assumption. Otherwise, you might get some unexpected results. For example, if your
transverse shear stiffness is 2.5 N, then inputting a shear force resultant of 1 N is too large as the
shear strain will be about 0.4, which cannot be considered as small, the basic assumption of the
VABS theory.

Both input files, input file name and input file name.glb, should be ended with a blank line to
avoid any possible incompatibility of different computer operating systems. The input file can be
given any name as long as the total number of the characters of the name including extension is
not more than 256. For the convenience of the user to identify mistakes in the input file, all the
inputs are echoed in the file named input file name.ech. Error messages are also written at the end
of input file name.ech and on the output screen.

7.3 User-defined Failure Criterion

A simple UMAT is provided for users to program their own failure criterion by changing the fortran
code UserFC.f90. The sample code is for max stress failure criterion for anisotropic materials. The
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failure criterion number and strength constants should be provided as described above. Pointwise
strains and stresses and strength constants are passed to the user subroutine, failure index, strength
ratio, failure mode, and strength ratio for each stress component are computed inside this subroutine
and passed back to VABS. Users need to first modify UserFC.f90 according to their own failure
criterion, then compile it to be a shared library. A sample make file (MakeUser) for using the
fortran compiler ifort is included. One only needs to execute make -f MakeUser to compile the user
subroutine. Then, one can use VABS with user-defined failure criterion. The code is simple enough
and there is enough comments inside the source codes for the user to adopt the sample code for
other user-defined failure criterion.

8 VABS Outputs

VABS homogenization analysis outputs the sectional properties stored in a text file named in-
put file name.K. VABS dehomogenization analysis could output 3D displacement/strain/stress, or
failure index/strength ratio distributions over the cross-section in different files as explained later.
All these output files are in pure text format and can be opened by any text editor.

8.1 Homogenization Outputs

Sectional properties obtained by a VABS homogenization analysis are stored in input file name.K.
Some results are listed as individual numbers, and some are listed as matrices. The definitions of
these properties are briefly summarized here for the convenience of end users. For more details,
please refer to VABS related publications.

VABS first computes the inertial properties which is represented by a 6 × 6 mass matrix with
respect to the beam coordinate system. The elements of the mass matrix are arranged as

µ 0 0 0 µxM3 −µxM2

0 µ 0 −µxM3 0 0
0 0 µ µxM2 0 0
0 −µxM3 µxM2 i22 + i33 0 0

µxM3 0 0 0 i22 i23
−µxM2 0 0 0 i23 i33


where µ is mass per unit length, xM2 and xM3 are the two coordinates of the mass center (also
called the mass-weighted centroid), and i22, i23 and i33 are the second mass moments of inertia.
The mass center and mass moments of inertia are measured with respect to the origin O and
coordinate axes x2 and x3. VABS also outputs the mass center, the mass matrix measured with
respect to the coordinate system with the mass center as the origin and coordinates parallel to
the beam coordinate system. Furthermore, VABS also outputs the inertial properties with respect
to the principal inertial coordinate system (origin at the mass center, coordinates aligning with
the principal inertial axes) including a mass per unit length, mass moments of inertia about the
three axes, the orientation of the principal inertial axes, and mass-weighted radius of gyration (de-
fined as the square root of the mass moment of inertia about x1 divided by the mass per unit length).
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VABS outputs the geometric center and the area of the cross-section. Only the geometry oc-
cupied by a material enters the calculation. In other words, if the cross-section is made of a single
material, the geometric center is located at the same location as the mass center and the tension
center.

VABS outputs the 4×4 stiffness matrix and compliance matrix for the classical beam model with
respect to the beam coordinate system. Based on the compliance matrix, VABS also outputs the
tension center (also called the modulus-weighted centroid), extension stiffness (commonly denoted
as EA), torsional stiffness (commonly denoted as GJ), principal bending stiffnesses (commonly
denoted as EI22, E33), and the orientation of the principal bending axes. The principal bending
stiffnesses are computed with respect to the tension center and the principal bending axes.

If damping flag is equal to 1, VABS also outputs the 4×4 damping matrix for the cross-section.

If thermal flag is equal to 3, VABS also output the thermal stress resultants and thermal strains
due to temperature changes for the classical beam model.

If curve flag is equal to 1, VABS also output the stiffness matrix, compliance matrix, tension
center, tension center, extension stiffness, torsional stiffness, principal bending stiffnesses, and the
orientation of the principal bending axes modified by the initial curvatures/twist of the beam.

If Timoshenko flag is equal to 1, VABS outputs the 6× 6 stiffness matrix and compliance ma-
trix for the Timoshenko beam model with respect to the beam coordinate system. Based on the
compliance matrix, VABS also outputs the shear center (also called the twist center), principal
shear stiffnesses, and the orientation of the principal shear axes. The principal shear stiffnesses are
computed with respect to the shear center and the principal shear axes. If damping flag is equal
to 1, VABS also outputs the 6 × 6 damping matrix for the cross-section. VABS also outputs the
classical stiffness matrix and classical compliance at the shear center as these are the inputs should
be used for an Euler-Bernoulli beam model.

If Vlasov flag is equal to 1, VABS outputs the 5 × 5 stiffness matrix and compliance matrix
for the Vlasov beam model with respect to the beam coordinate system. This model is important
for capturing the “restrained warping” effect for thin-walled beams with open sections. For such
beams, it is meaningful to have a Vlasov model based on choosing the shear center as its reference.
Hence to obtain a Vlasov model, VABS finds the shear center first and then shifts the origin of the
coordinate system to the shear center and calculate the 5×5 stiffness matrix and compliance ma-
trix. If damping flag is equal to 1, VABS also outputs the 5×5 damping matrix for the cross-section.

If trapeze flag is equal to 1, VABS output four 4×4 coefficient matrices associated with the four
classical deformation modes (extension, twist, and two bending modes) for capturing the trapeze
effect important for torsionally soft rotating beams.

Users are encouraged to refer to a recent paper26 provides detailed explanations for the inertial
and structural properties computed by VABS. How these outputs are related to traditional defini-
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tions of sectional properties and how to extract engineering beam properties from VABS outputs
as inputs for conventional beam analysis codes.

8.2 Dehomogenization Outputs

If analysis is equal to 1 or 2, VABS will carry out a dehomogenization analysis to predict 3D
displacements/strains/stresses based on the nonlinear or linear beam theory. The recovered 3D
displacements are stored in input file name.U. The values are listed for each node identified by its
location as: “x2 x3 u1 u2 u3”, where x2 and x3 are the coordinates of the node, ui the recovered
3D displacements at this node, expressed in the beam coordinate system.

The recovered 3D strains for each Gauss point measured in the beam coordinate system are
stored in input file name.E. The values are listed for each Gauss point identified by its location
as: “x2 x3 ε11 2ε12 2ε13 ε22 2ε23 ε33”, where εij are the 3D strain components. The recovered 3D
strains measured in the material coordinate system are stored in input file name.EM.

The recovered 3D stresses for each Gauss point measured in the beam coordinate system are
stored in input file name.S. The values are listed for each Gauss point identified by its location as:
“x2 x3 σ11 σ12 σ13 σ22 σ23 σ33”, where σij are the 3D stress components. The recovered 3D stresses
measured in the material coordinate system are stored in input file name.SM.

The recovered 3D strains for each node measured in the beam coordinate systems are stored
in input file name.EN. The values are listed for each node identified by its node number and the
location as: “ node no x2 x3 ε11 2ε12 2ε13 ε22 2ε23 ε33”, where node no denotes the node number
originally given in the homogenization input file. The node number is arranged consecutively from
1 to the total number of nodes. Multiple strain values could exist for one node if the node is
shared by multiple elements. The recovered 3D strains for each node measured in the material
coordinate system are stored in input file name.EMN. The corresponding recovered 3D stresses for
each node measured in the beam coordinate system and the material coordinate system are stored
in input file name.SN and input file name.SMN, respectively.

The average of 3D strains and stresses among all the Gauss points within each element are stored
in input file name.ELE, where the integer number indicating the element number, the following six
real numbers are strains measured in the beam coordinate system, the next six real numbers are the
stresses measured in the beam coordinate system, the next six real numbers are strains measured in
the material coordinate system, the last six real numbers are the stresses measured in the material
coordinate system.

If analysis is equal to 10 or 20, only input file name.ELE will be written and all other files will
be suppressed for saving time and space. The savings become significant particularly for many
dehomogenization runs needed for automatic optimization.

If analysis is equal to 3, VABS will carry out a dehomogenization analysis to compute failure
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indexes and strength ratios for each element based on the recovered results of the linear beam
theory. The results are stored in input file name.fi, where the integer number indicating the element
number, the following real number is the failure index for the element, and the next real number
is the strength ratio for the element. If a failure criterion with clearly identifiable failure modes is
used, such as failure criterion 1 (max stress), 2 (max strain), 5 (Hashin), VABS will also output
the corresponding failure mode for each element in the following column. For criterion 1 or 2,
the failure modes could be normal stress failure including 11 tensile (compressive), 22 tensile (or
compressive), 33 tensile (or compressive), and shear failure including 23, 13, 12. For criterion 5,
the failure modes could be fiber (tensile or compressive) failure, or matrix (tensile or compressive)
failure. For criterion 1 or 2, six more columns are also used to indicate the strength ratios for
corresponding stress/strain components (11, 22, 33, 23, 13, 12). For criterion 5, two more column
are also used to indicate the strength ratios for fiber and matrix failure. The last line of this output
file stores the minimum strength ratio among all the elements, and the smallest element number
when this happens. The minimum strength ratio is the safety margin of the cross-section under
the given global responses.

9 VABS Maintenance and Tech Support

AnalySwift is committed to maintaining and providing tech support for VABS. A discussion group
is specifically set up for information exchange related with VABS. Users are highly encouraged to
follow https://github.com/orgs/wenbinyugroup to receive most recent news of VABS, ask questions,
and share with others. A technical question should be posted in the discussion forum on
GitHub before it will be answered. A page of VABS FAQ will be constantly updated in the
group. Before you ask questions, please do the following:

1. Read the VABS manual carefully, if you have not done so;

2. Check the error message at the end of input file name.ech;

3. Make sure that you have provided the right input data through input file name.ech, which is
VABS’ understanding of your input file;

4. Check the VABS FAQ page on the GitHub;

5. Post your question in the forum on GitHub. If your question contains sensitive information,
you can ask questions through email.

10 Epilogue

After a period of over three decades of continuous development since year 1989, VABS has reached
a level of maturity, and its accuracy has been extensively verified by its developers and users. The
performance and robustness of code have been continuously improved based on feedback from its
users throughout the world. Although VABS has been designed in such a way that end users do not
have to fully understand its theoretical foundation (the details of which are spelled out in VABS
related publications), further questions are inevitable because VABS represents a new paradigm to
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analyze composite beams which is drastically different from other methods. Nevertheless, it should
be clear that VABS is the best available code for engineers to design and analyze composite slender
structures using beam models.
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